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Abstract——Neurochemical and morphological evi-
dence has shown that some neurotransmitters or sub-
stances may be released from both synaptic and non-
synaptic sites for diffusion to target cells more distant
than those observed in regular synaptic transmission.
There are functional interactions between neurons
without synaptic contacts, and matches between re-
lease sites and localization of receptors sensitive to
the chemical signal are exceptions rather than the
rule in the central nervous system. This also indicates
that besides cabled information signaling (through
synapses), there is a “wireless” nonsynaptic interac-
tion between axon terminals. This would be a form of
communication transitional between discrete classi-
cal neurotransmission (in Sherrington’s synapse) and
the relatively nonspecific neuroendocrine secretion.
Recent findings indicate that in addition to mono-
amines (norepinephrine, dopamine, serotonin), other

transmitters, such as acetylcholine and nitric oxide
(NO), may also be involved in these nonsynaptic inter-
actions. It has been shown that NO, an ideal mediator
of nonsynaptic communication, can influence the
function of uptake carrier systems, which may be an
important factor in the regulation of extracellular
concentration of different transmitters. This review
will focus on the role of nonsynaptic receptors and
transporters in presynaptic modulation of chemical
transmission in the central nervous system. The non-
synaptic interaction between neurons mediated via
receptors and transports of high affinity not localized
in synapses has the potential to be an important con-
tributor to the properties and function of neuronal
networks. In addition, it will be suggested for the first
time that the receptors and transporters expressed
nonsynaptically and being of high affinity are the tar-
get of drugs taken by the patient.

I. Introduction

Our understanding of chemical signal transmission
between neurons and between axon terminals and tar-
get cells has advanced significantly since Elliott (1904),
Loewi (1921), and Dale (1934) first elaborated on the
concept that epinephrine and acetylcholine (ACh)2 are
released from the neuron and may be able to transmit
signals toward target cells. Today, our knowledge of how
information is conveyed chemically from one cell to an-
other has been heavily influenced by textbook data on
the neuromuscular junction (Katz, 1969), in which the
transmitter ACh is stored in vesicles and released into
the junctional gap in quanta. This system is adopted for
very fast signaling: The information transfer occurs
within millisecond time intervals and is able to transmit
messages of several hundred impulses per second. Each
synaptic vesicle releases a quantum of 7000 to 12,000
ACh molecules into the narrow junctional cleft, raising
the local concentration to the millimolar range (Kuffler
and Yoshikami, 1975; cf. Van der Kloot and Molgo,
1994). Under this condition, the receptors receiving the
chemical messages are of low affinity. As far as the

structure for chemical information processing is con-
cerned, since the work of Ramon-y-Cajal (1893) and
Sherrington (1906), much of our current knowledge
comes from studies based on junctional architecture (cf.
Tansey, 1998). The idea that the transmitter is released
in quanta on the arrival of the action potential is well
established and has been accepted at the neuromuscular
junction, but it is not at all clear that this is the case at
the autonomic neuroeffector transmission site. In con-
trast to striatal muscle, autonomic neuroeffector sys-
tems are thus not organized in units, but the innervation
is quite diffuse. The quantal release is less clearly es-
tablished in the central nervous system (CNS), although
evidence is presented that this is probably the case.
Accordingly, the brain was considered a telephone net-
work that receives signals via synapse processing by
means of a high concentration of transmitters through
receptors. A chemical signal transmission system that
primarily uses synaptic transmission in the CNS pos-
sesses several characteristics. Because transmitter con-
centration in the synaptic gap can be high (;0.01–1
mM), the receptors expressed on both presynaptic and
postsynaptic sites are of low affinity (MacDermott et al.,
1999). Additionally, once released, the transmitter is
removed from the cleft either enzymatically or by an
uptake system and by diffusion.

One well characterized mechanism by which chemical
neurotransmission can be modulated is the presynaptic
modulation of transmitter release via presynaptic recep-
tors expressed on axon terminals. Activation of these
receptors by endogenous or exogenous ligands results in
inhibition or facilitation of the amount of transmitters
released into the extracellular space by an action poten-
tial (Starke et al., 1977, 1989; Westfall 1977; cf. Starke,
1981; Langer, 1981a; Vizi, 1979; Muscholl, 1980a,b; Kal-

1 Address for correspondence: Dr. E. Sylvester Vizi, Department of
Pharmacology, Institute of Experimental Medicine, Hungarian
Academy of Sciences, POB 67, H-1450 Budapest, Hungary. E-mail:
ESVIZI@KOKI.HU

2 Abbreviations: ACh, acetylcholine; AMPA, a-amino-3-hydroxy-
5-methylisoxazole-4-propionic acid; [Ca21]o, extracellular Ca21 con-
centration; [Na1]i, intracellular Na1 concentration; CNS, central
nervous system; DA, dopamine; DAT, dopamine transporter; GABA,
g-aminobutyric acid; Glu, glutamate; IPSP, inhibitory postsynaptic
potential; KA, kainate; nAChR, nicotinic acetylcholine receptor; NE,
norepinephrine; NET, norepinephrine transporter; NMDA, N-meth-
yl-D-aspartic acid; NO, nitric oxide; PKC, protein kinase C; 5-HT,
serotonin; TTX, tetrodotoxin.
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sner and Westfall, 1990; Wu and Saggau, 1997). It is
interesting to note that Koelle (1990) mentioned in his
review that the first concrete evidence of presynaptic
receptors was published in a classic report by Masland
and Wigton (1940). These authors claimed that the fas-
ciculation that follows the intra-arterial injection of ACh
or an anticholinesterase drug into a skeletal muscle
reflects the firing of the motor units rather than stimu-
lation of the muscle fibers. The other possibility to mod-
ulate the extracellular concentration of transmitters,
once released, is their removal by one of the Na1/Cl2-
dependent neurotransmitter transporters. The trans-
porter is a plasma membrane protein that operates by
reuptake of the released transmitter. The tricyclic anti-
depressants exert their effect on monoamine transport-
ers by prolonging the time needed for clearance of trans-
mitters from the extracellular space.

Neurochemical (Vizi, 1980, 1984; cf. Vizi and Kiss,
1998) and morphological (Descarries et al., 1987;
Oleskevich et al., 1989; Umbriaco et al., 1995) evidence
has shown that some neurotransmitters may be released
from both synaptic and nonsynaptic sites (Fig. 1) for
diffusion to target cells more distant than those ob-
served in synaptic transmission. It has been shown in
the gut and brain that in response to activation of the
noradrenergic neurons, there was an a-adrenoceptor-
mediated inhibition of ACh release from neighboring
cholinergic terminals (Vizi and Knoll, 1971, 1976; Vizi,
1974, 1980b) without any morphologic (synaptic) contact
between them. These findings indicate that there is
functional interaction (presynaptic inhibition) between
neurons without any morphological contact (cf. Vizi,
1980a, 1984a). This was supported by the fact that
matches between release sites and localization of recep-
tors sensitive to the chemical signal are exceptions
rather than the rule (Herkenham, 1987). Although the
disparities between axon terminals (release sites) and
receptors were noted in several reports (cf. Herkenham,
1991), Herkenham was the first who studied this mis-
match carefully. Even in the report on substance P re-
ceptors (Rothman et al., 1984), they put forth that mis-
matches were the rule rather than the exception. The
conclusion (Herkenham, 1987; McLean et al., 1987)
drawn from this “mismatch” problem was that mis-
matches reflect on the existence of high-affinity nonsyn-
aptic receptors that are able to mediate “parasynaptic”
(Schmitt, 1984) signal transmission. The nonsynaptic
interactions between neurons would be a form of com-
munication transitional between discrete classic neuro-
transmission (in Sherrington’s synapse) and the rela-
tively nonspecific neuroendocrine secretion. Recent
findings indicate that in addition to monoamines [nor-
epinephrine (NE), dopamine (DA), and serotonin(5-hy-
droxytryptamine, or 5-HT)], other transmitters, such as
ACh (Descarries et al., 1997) and nitric oxide (NO; Daw-
son and Snyder, 1994), also may be involved in these
nonsynaptic interactions. NO can influence the function

of uptake carrier systems (Cutillas et al., 1998; Kiss et
al., 1999), which may be an important factor in the
regulation of extracellular concentration of different
transmitters (Gainetdinov et al., 1998; Segovia and
Mora, 1998).

This review focuses on the role of nonsynaptic recep-
tors and transporters in presynaptic modulation of
chemical transmission in the CNS, and I outline some of
the potential points at which we might expect the occur-
rence of nonsynaptic functional interaction between
neurons. It should be clear from this review that non-
synaptic interaction between neurons mediated via re-
ceptors and transporters of high affinity not localized in
synapses has the potential to be an important contribu-
tor to the properties and function of neuronal networks.
In addition, receptors and transporters expressed non-
synaptically and of high affinity are the target of drugs
taken by the patient.

FIG. 1. Synaptic and nonsynaptic interaction between neurons. The
transmitter release from varicosity without synaptic contact diffuses far
away from the release site and activates remote receptors of high affinity.
The transmitter concentration in the extracellular space is low and drops
in a function of 3. In the synapse, the transmitter concentration is very
high, and there is a possibility of spillover. Transmitter released is taken
up by plasma membrane transporters located in the synapse or extra-
synaptically.
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II. Modulation of Neurochemical Transmission:
Role of Receptors and Plasma Membrane

Transporters

A. Presynaptic Receptor-Mediated Modulation of
Transmitter Release

Action potential at the nerve terminal results in an
increase in Ca21 influx through Ca21 channels, activat-
ing Ca21 sensors, which in turn trigger the release ma-
chinery to cause vesicle fusion and transmitter release
(cf. Llinas, 1977). Extracellular Ca21 concentration
([Ca21]o)-dependent release of transmitters [glutamate
(Glu): Uchihashi et al., 1998; Nakai et al., 1999; DA:
Milusheva et al., 1992, 1996; and NE: West and Fillenz,
1980) is vesicular (Katz, 1969)], has a high requirement for
energy, and is very sensitive to the intracellular ATP level.
The [Ca21]o-dependent release can be blocked by tetrodo-
toxin and subjected to presynaptic modulation via activa-
tion of different presynaptic receptors (Table 1).

It was not until the late 1960s that the concept of
presynaptic receptors (i.e., receptors on nerve endings,
as opposed to postsynaptic receptors on effector cells)
was proposed and the hypothesis was advanced that
presynaptic receptor mechanisms are involved in the
modulation of neuronal ACh and NE release via a- and
muscarinic heteroreceptors (Lindmar et al., 1968; Vizi,
1968; Löffelholz and Muscholl, 1969a,b; Paton and Vizi,
1969).

In 1971, in different laboratories (De Potter and
Chubb, 1971; Farnebo and Hamberger, 1971; Kirpekar
and Puig, 1971; Starke, 1971), NE was shown to inhibit
its own release from noradrenergic terminals via pre-
synaptic a-adrenoceptors. This was named “negative
feedback” modulation. Later, similar autoreceptor-medi-
ated modulation was described for other transmitters. It
was even shown that there is a positive feedback mod-
ulation when the transmitter released into the synaptic
cleft increases its own release via stimulation of recep-
tors located on terminals from which the transmitter is
released.

The release of transmitter is subjected to presynaptic
receptor-mediated modulation (Langer, 1977, 1981a;
Nicoll and Alger, 1979; Vizi, 1979, 1984; cf. Starke et al.,
1989) if the release is of vesicular origin, is [Ca21]o-
dependent (Table 1), and is associated with axonal con-
duction. The ligand-gated release by nicotinic acetylcho-
line receptor (nAChR) or P2X receptor stimulation is
also [Ca21]o-dependent (Sershen et al., 1997; cf. Wonna-

cott, 1997). Because it has been shown that a2-adreno-
ceptor activation (Vizi et al., 1995b) inhibits the release
of NE evoked by nAChR stimulation, it seems very likely
that this type of release is subjected to presynaptic in-
hibition.

There is a [Ca21]o-independent release that is not
associated with neuronal conduction and not of vesicular
origin. It has been reported that transmitters can be
released by drugs (e.g., ouabain, indirectly acting sym-
pathomimetic amines) or conditions (e.g., ischemia) in
the absence of [Ca21]o (cf. Ádam-Vizi, 1992; Bernáth,
1992), which has been attributed to an increase in in-
tracellular Na1 concentration ([Na1]i; Vizi, 1972; Baker
and Crawford, 1975; Erulkar and Rahamimoff, 1978;
Schoffelmeer and Mulder, 1983). This type of release is
not subject to presynaptic modulation (Vizi, 1984) and is
carried out by reversed operation of the plasma mem-
brane transporter mediated via an increase in [Na1]i
(Table 1). The carrier-mediated release (Vizi, 1972,
1978; Vizi et al., 1985; Kauppinenen et al., 1988; Pin and
Bockaert, 1989; Attwell et al., 1993; Levi and Raiteri,
1993; Milusheva et al., 1994, 1996; Malva et al., 1998a,b;
cf. Vizi and Kiss, 1998) does not require energy and is
consistent with a drop in intracellular ATP levels and
the consequent inhibition of Na1,K1-activated ATPase
activity, which leads to a decline in the Na1 electro-
chemical gradient across the plasma membrane and ac-
cumulation of [Na1]i (Nicholls and Attwell, 1990). The
excessive transmitter release of nonvesicular origin (At-
twell et al., 1993) cannot be modulated via presynaptic
receptors (Table 1). A similar mechanism is responsible
for [Ca21]o-independent release of different transmitters
during ischemia simulated by oxygen and glucose with-
drawal (Kauppinenen et al., 1988; Budd, 1998).

K1 excess has been used for a long time to study
transmitter release. It is [Ca21]o-dependent and is likely
to be of vesicular origin (Table 1), at least at low concen-
trations.

The overwhelming majority of the evidence for pre-
synaptic receptor-mediated modulation of transmitter
release derives from assays of agonist- and antagonist-
induced changes in the release rate from in vitro (slice,
synaptosomes) and in vivo (microdialysis, amperometry)
preparations. Although assay of the amount of transmit-
ters in the superfusate or in the dialysate is limited in
spatial and temporal resolution, electrophysiological
methods (e.g., whole-cell recording) in brain slices or in

TABLE 1
Characteristics of different types of transmitter release

Subject to
Presynaptic
Modulation

[Ca21]o-
Dependent Mode of Release Ca21 Channel

Involved
TTX-

Sensitive
Carrier

Involved

Neuronal frequency-coded Yes Yes Vesicular exocytosis Yes Yes No
Ligand-gated Yes Yes Vesicular exocytosis Yes Yes No
Carrier-mediated No No Cytoplasmic No Yes/no Yes
[K1]o excess Yes/noa Yes Vesicular exocytosis Yes No No

a At high [K1]o (extracellular K1 concentration) (.60 mM), there is no presynaptic modulation.
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cell culture help us to overcome these problems and to
study the effects of ligands on presynaptic terminals
recording the postsynaptic responses. However, even the
electrophysiological recordings of the frequency of spon-
taneous postsynaptic currents or the amplitude of the
evoked postsynaptic current, without a change in
postsynaptic sensitivity to the synaptic transmitter, pro-
vide convincing evidence that the receptor in the study is
expressed on the terminal. This technique fails to ex-
clude the possibility that a chemical is released from the
postsynaptic site that may act retrogradely, affecting
the release of transmitter from the presynaptic site.
Therefore, to circumvent these difficulties, the final con-
clusion should be drawn from data obtained from differ-
ent techniques.

1. Heteroreceptor-Mediated Control of Transmitter Re-
lease. An important consequence of the expression of re-
ceptors on axon terminals is the capability of modulation
(increase or decrease) of transmitter release triggered by
the action potentials when they invade presynaptic termi-
nals. Heteroreceptors are located presynaptically; they
bind transmitters other than those released by the axon
terminal on which they reside. Heteroreceptors can be
ionotropic or metabotropic.

The first neurochemical and pharmacological evi-
dence of heteroreceptors was obtained when it was
shown in guinea pig ileal longitudinal muscle strip prep-
aration that the stimulation-evoked release of ACh from
the Auerbach plexus is tonically controlled by NE re-
leased from the neighboring noradrenergic neurons via
a-adrenoceptors (Vizi, 1968; Paton and Vizi, 1969; Vizi
and Knoll, 1971). Although NE or epinephrine inhibited
the release of ACh in a concentration-dependent man-
ner, phenylephrine did not affect it. The release in re-
sponse to axonal stimulation was increased when the
a-adrenoceptor antagonist phentolamine was present,
indicating that the release was tonically controlled by
endogenous NE. This was the first indication of inhomo-
geneity of a-adrenoceptors; NE and phenylephrine, two
a-adrenoceptor agonists, have different effects on ACh
release. Today, they are designated a2- and a1-adreno-
ceptors. Also, the stimulation-evoked release of NE from
sympathetic nerve in the heart is inhibited by ACh re-
leased from the vagal nerve (Lindmar et al., 1968; Löffel-
holz and Muscholl, 1969a). These two observations pro-
vided the first evidence for presynaptic interactions
between neurons by means of their transmitters, via
heteroreceptors. The main difference between these two
effects is that in the Auerbach plexus, there is no syn-
aptic contact between noradrenergic and cholinergic
axon terminals (Gordon-Weeks, 1982), but still there is a
functional connection; stimulation of a noradrenergic
axon results in an inhibition of ACh release (Vizi and
Knoll, 1971; Manber and Gershon, 1979), whereas in the
heart, vagal nerve endings make synaptic contacts with
the noradrenergic axon terminals (Ehinger et al., 1970).

Interaction via heteroreceptors (a2A, a2B, M2, m , and
so on) located on varicosities has been shown (cf. Vizi,
1979; Starke, 1981; Starke et al., 1989; Göthert and
Schlicker, 1991) between different axon terminals in
different neurons (Table 2). Because the amount of
transmitters released depends on the magnitude and
duration of terminal depolarization and on Ca21 influx,
ionotropic heteroreceptors that depolarize and/or in-
crease Ca21 influx increase the release. In contrast,
metabotropic heteroreceptors that enhance K1 or Cl2

conductance and are coupled to G proteins reduce the
release. This type of presynaptic modulation is graded.
Only axodendritic axosomatic and dendrodendritic syn-
aptic or nonsynaptic interactions regulate the genera-
tion of an action potential.

2. Autoreceptor-Mediated Control of Transmitter Re-
lease. The first evidence was provided in the 1970s when
Starke (1971) and others (De Potter and Chubb, 1971;
Farnebo and Hamberger, 1971a; Kirpekar and Puig,
1971) showed that NE inhibits its own release via a-ad-
renoceptors. Later, it turned out that these receptors are
different from those located on the postsynaptic site.
Therefore, presynaptic a-adrenoceptors have been
named a2-adrenoceptors (Langer, 1977, 1981a,b).

The notion that the release of NE (Starke, 1971;
Langer, 1974; Stjärne, 1981, 1989), and other transmit-
ters (Langer, 1974; Starke, 1977; Westfall, 1977; Vizi,
1979, 1984a; Starke et al., 1989; Kalsner and Westfall,
1990; Vizi and Lábos, 1991; Kilbinger et al., 1993; Göth-
ert and Schlicker, 1997; Vizi and Kiss, 1998) can be
modulated via stimulation of presynaptic autoreceptors
(a2, M2, m, and so on) sensitive to transmitter released
from axon terminal on which the receptor is expressed is
now widely accepted (Table 2). This can be envisaged as
an attempt to limit the release of excessive amounts of
transmitter to keep postsynaptic responses within the
physiological range.

3. Presynaptic Ionotropic Receptors. Recent conver-
gence of data from morphological and functional (phar-
macological, neurochemical, and electrophysiological)
studies provided new insights into the role of presynap-
tic ligand-gated ion channels (cf. McGehee and Role,
1996; MacDermott et al., 1999) in modulation of trans-
mitter release, thereby in the efficacy of synaptic and
nonsynaptic communication. Activation of ionotropic re-
ceptors results in very rapid changes of ion channels.

a. Nicotinic Acetylcholine Receptors. Several lines of
neurochemical, pharmacological, morphological, and
electrophysiological evidence indicate that in the CNS,
nAChRs are mainly involved in presynaptic modulation
of transmitter release and are not receptors of postsyn-
aptic localization transmitting cholinergic messages
(Wonnacott et al., 1989, 1995; cf. McGehee et al., 1995;
Vizi et al., 1995; McGehee and Role, 1996; Sershen et al.,
1997; Wonnacott, 1997; Vizi and Kiss, 1998). Activation
of nAChRs in brain regions either results in a transmit-
ter release or facilitates the release due to axonal stim-
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ulation (cf. MacDermott et al., 1999; Vizi and Lendvai,
1999). ACh increases ACh via nACh autoreceptors (Mar-
chi et al., 1999) and Glu, NE, 5-HT, g-aminobutyric acid
(GABA), and DA release via nACh heteroreceptors (cf.
Wonnacott, 1997; Vizi and Lendvai, 1999). Lena et al.
(1993) suggested that presynaptic nAChRs, depending

on their apparent localization, may differentially influ-
ence the release of transmitter that is associated with
nerve conduction and that is not resulted from axonal
conduction. The release of NE from the hippocampal
slices (Vizi et al., 1995; Sershen et al., 1997) and DA
from striatal slices (Marshall et al., 1996) evoked by

TABLE 2
References for the effect of stimulation of presynaptic receptor (ionotropic and metabotropic) activation by major transmitters and ATP (adenosine)

on [Ca21]o-dependent transmitter release in the CNS [neurochemical and electrophysiological (EP) evidence]

Increase of Release Inhibition of Release

Via Autoreceptors Via Heteroreceptors Via Autoreceptors Via Heteroreceptors

Glutamatergic (Glu) AMPA,4 NMDA,46

KA49
nAChR (a7),17 P2X,34 A2A,36 GABAA

53 mGluR4/7/8 (EP),
6

KA5
GABAB,15 M2 (EP),18 A1,48 a2

52

GABAergic (GABA) D1,3 nAChR (a7 or a4b2, EP),1 5 HT3 (EP)21 GABAB
10 mGluR2/3 (EP),

19 KA,16 M2,26 D2,32

5HT1A (EP),20 A2A (EP)51

Cholinergic (ACh) nAChR9 A2A,37 P2X38 M2,8 M47 5-HT1B,22 A1 (EP),35 D2,42 A1
43

Noradrenergic (NE) a1
11 NMDA23/AMPA/KA,24 nAChR(a3b2),2

GABAA,25 P2X,40 5-HT3
57

a2A
12 GABAB,25 P2Y,39 A1

50

Serotonergic (5-HT) 5-HT3
55 AMPA27 5-HT1B/D,13,14 5-

HT1D
54

a2A,30 GABAA,28 GABAB,29 M131

Dopaminergic (DA) P2X,41 non-NMDA,44 nAChR (a4b2,45

a3b247), 5-HT3
56

D2
33

1 (a7, EP) Alkondon et al., 1996, 1997. (a4b2, EP) Lu et al., 1998; Lena and Changeux, 1997.
2 (a3b2) Vizi et al., 1995; Sershen et al., 1997.
3 (D1) Floran et al., 1990.
4 (AMPA) Barnes et al., 1994; Chaki et al., 1998.
5 (KA) Chittajallu et al., 1996.
6 [mGluR4/7/8 (EP)] Scanziani et al., 1997.
7 (M4) McKinney et al., 1993.
8 (M2) Richards, 1990.
9 (nAChR) Wilkie et al., 1996.
10 (GABAB) Pittaluga et al., 1987.
11 (a1) Pastor et al., 1996.
12 (a2A) Kiss et al., 1995; and see Table 3.
13 (5-HT1B/D) Maura et al., 1986.
14 (5-HT1B/D) Limberger et al., 1991; Jackisch et al., 1999a.
15 (GABAB) Pende et al., 1993.
16 (KA) Cunha et al., 1997.
17 (a7) Gray et al., 1996.
18 (M2) Marchi and Raiteri, 1989; (EP) Hasselmo and Bower, 1992.
19 [mGluR2/3 (EP)] Poncer et al., 1995.
20 [5-HT1A (EP)] Bijak and Misgeld, 1997.
21 [5-HT3 (EP)] Peters et al., 1992; Piguet and Galvan, 1994.
22 (5-HT1B) Maura and Raiteri, 1986.
23 (NMDA) Pittaluga and Raiteri, 1990.
24 (AMPA/KA) Pittaluga and Raiteri, 1992a; Desai et al., 1994, 1995; Patel and Croucher, 1997; Cowen and Beart, 1998.
25 (GABAB) Fung and Fillenz, 1983.
26 (M2) Raiteri et al., 1990b; (EP) Levey et al., 1995.
27 (AMPA) Pittaluga et al., 1997.
28 (GABAA) Balfour, 1980.
29 (GABAB) Andrews et al., 1992.
30 (a2A) Gobbi et al., 1990; MacDonald et al., 1997.
31 (M1) Marchi et al., 1986.
32 (D2) Floran et al., 1997; Hársing and Zigmond, 1997.
33 (D2) Hoffmann and Cubeddu, 1984.
34 (P2X) Gu and MacDermott, 1997.
35 (A1) Morton and Davies, 1997.
36 (A2A) Popoli et al., 1995.
37 (A2A) Cunha et al., 1994, 1995; Brown et al., 1990.
38 (P2X) Sperlágh and Vizi, 1991; Sun and Stanley, 1996.
39 (P2Y) von Kugelgen et al., 1994; Koch et al., 1997.
40 (P2X) Boehm, 1999.
41 (P2X) Zhang et al., 1996.
42 (D2) Hoffmann and Cubeddu, 1984.
43 (D2) Cunha et al., 1994; Jackisch et al., 1984.
44 (non-NMDA) Petitet et al., 1995.
45 (nAChR, a4b2) Grady et al., 1994.
46 (NMDA) Montague et al., 1994 (via NO production).
47 (nAChR, a3b2) Kulak et al., 1997.
48 (A1) Corradetti et al., 1984; Fastbom and Fredholm, 1985.
49 (KA) Terrian et al., 1991; Malva et al., 1996.
50 (A1) Harms et al., 1978; von Kügelgen et al., 1992.
51 (A2A) Kirk and Richardson, 1994; (EP) Mori et al., 1996.
52 (a2) Kamisaki et al., 1992; Bickler and Hansen, 1996.
53 (GABAA) Herrero et al., 1999.
54 (5-HT1D) Galzin et al., 1992 (human); Maura et al., 1993 (human).
55 (5-HT3) Martin et al., 1992; Bagdy et al., 1998.
56 (5-HT3) Zazpe et al., 1994.
57 (5-HT3) Allgaier et al., 1995.
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nAChR activation is tetrodotoxin- and mecamylamine-
sensitive and [Ca21]o-dependent (Sershen et al., 1997;
cf. Vizi and Lendvai, 1999). In contrast, the release from
synaptosomal preparation (defined as presynaptic ele-
ments) in nAChR stimulation was tetrodotoxin(TTX)-
insensitive (Clarke and Reuben, 1996). The TTX sensi-
tivity of nAChRs-evoked transmitter release has been
interpreted as “preterminal” rather than presynaptic
location of nAChRs (Wonnacott, 1997). This would indi-
cate that the nAChRs are expressed on the preterminal
axon and that their activation elicits an action potential
that consequently opens voltage-dependent Ca21 chan-
nels in the terminal to release transmitter. A more con-
vincing explanation is that nAChRs are expressed on the
boutons and their activation results in depolarization
and Ca21 influx (for review, see MacDermott et al.,
1999; Vizi and Lendvai, 1999). Presynaptic nAChRs are
likely to be as diverse in subunit composition as their
somatodendritic counterparts (cf. Vizi and Lendvai,
1999).

An important question arises as to whether presynap-
tic nAChRs could be targeted by endogenously released
ACh, which is limited by fast enzymatic hydrolysis, or
whether they are silent receptors that are activated only
during smoking or cholinesterase inhibition. Taking into
account the diffuse cholinergic projections and the rela-
tively low proportion of cholinergic boutons making syn-
aptic contact (7–14%) in the CNS (Descarries et al.,
1997), it seems likely that ACh released from varicose
axon terminals plays both synaptic and nonsynaptic pre-
synaptic modulator roles. Kása et al. (1995) showed in
the cortex that ACh could be released even from nonsyn-
aptic varicosities.

Regardless of the interaction between cholinergic ter-
minals and noradrenergic, dopaminergic, and serotoner-
gic varicosities equipped with nAChRs, the stimulation
of these receptors by nicotine inhaled during smoking
may result in a release of excitatory amino acids (Toth et
al., 1993) and NE, DA, or 5-HT, transmitters that are
able to diffuse far away from the release site as demon-
strated by microdialysis studies (Schneider et al., 1994)
and affect tonically the release of other transmitters or
the firing rate of other circuitry.

b. Glutamate Receptors (N-Methyl-D-aspartic Acid,
a-Amino-3-hydroxy-5-methysoxazole-4-propionic Acid,
and Kainate Receptors). The vast majority of excitatory
synapses are glutamatergic, in which Glu transmits the
signal through postsynaptic ionotropic [N-methyl-D-as-
partic acid (NMDA), a-amino-3-hydroxy-5-methysox-
azole-4-propionic acid (AMPA), and kainate (KA)] and
metabotropic receptors (Bettler and Mulle, 1995). Glu is
a fast excitatory transmitter in the CNS and has been
shown, with GABA, to interact primarily with receptors
in the synaptic cleft (Tong and Jahr, 1994; Geiger et al.,
1997; Jensen et al., 1998; Dingledine et al., 1999; Mac-
Dermott et al., 1999).

There are several reports of presynaptic localization of
GluRs and their involvement in transmitter release (Ta-
ble 2). The fact that NMDA releases Glu (Pittaluga et
al., 1996), DA (Kuo et al., 1998), and NE (Pittaluga and
Raiteri, 1996) from axon terminals indicates that Glu
released is able to facilitate transmitter release via
NMDA receptors. In addition, presynaptic AMPA recep-
tor activation results in an increase of Glu release, pro-
vided that the receptor’s fast desensitization was pre-
vented by cyclothiazide (Barnes et al., 1994; Desai et al.,
1994). However, Montague et al. (1994) hinted that
there is some doubt regarding this conclusion. They
showed that Glu and NE release from cortical synapto-
somes was in correlation with NMDA-induced produc-
tion of nitric oxide (NO), an endogenous chemical that is
able to inhibit basal membrane transporters, thereby
increasing the concentration and life-span of transmit-
ters (e.g., Glu and NE) released into the extracellular
space. The inhibition of neuronal NO synthase by 7-ni-
troindazole protects against NMDA-mediated excito-
toxic lesions but not against those evoked by AMPA or
KA (Schulz et al., 1995).

It has also been shown that KA and Glu can reduce
Glu release via a presynaptic receptor that controls chlo-
ride channels (Sarantis et al., 1988). In the presence of
uptake inhibitors, even Glu (Asztely et al., 1997; Kull-
man and Asztely, 1998) and GABA (Isaacson et al.,
1993) may have extrasynaptic actions. Until now, there
has been no convincing evidence for the nonsynaptic
release of Glu. In the synapse, an active transport mech-
anism limits the intrasynaptic concentration of Glu (cf.
Gelagashvili and Schousboe, 1998).

In addition, it has been shown that presynaptic AMPA
receptors (cf. Tarnawa and Vizi, 1998) play a role in the
regulation of the release of neurotransmitters in several
brain areas. Activation of AMPA receptors releases NE
from nerve terminals. GYKI 52466 [1-(4-aminophenyl)-4-
methyl-7,8-methylene-dioxy-5H-2,3-benzodiazepine], a
non-NMDA receptor antagonist (cf. Vizi et al., 1996, 1997),
blocked aspartate release from forebrain slices, Glu release
from cerebellar cultures and hippocampal synaptosomes,
and DA release from rat mesencephalic cultures evoked by
AMPA receptor stimulation. The release of DA from nigro-
striatal axon terminals in the striatum is also increased by
stimulation of NMDA and non-NMDA receptors (Kuo et
al., 1998; for a review, see Morari et al., 1998). These data
provide increasing support for the conclusion that NMDA
and non-NMDA receptors (AMPA and KA) are located on
presynaptic nerve terminals and are able to influence
transmitter release (MacDermott et al., 1999).

c. g-Aminobutyric AcidA Receptors. Frank and
Fuortes (1951) were the first to show that the inhibition
of excitatory postsynaptic potentials in motoneurons is a
presynaptic event. Several reports (Kardos, 1999) have
shown that most of the physiological actions of GABA
are mediated via GABAA (Seabrook et al., 1997;
Sieghart et al., 1999; Vizi and Sperlágh, 1999; Whiting,
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1999), and these receptors (Barnard et al., 1998) are
involved in the presynaptic inhibition of signal trans-
mission in, for example, the hippocampus (Vautrin et al.,
1994) and feline spinal motoneurons (Stuart and Red-
man, 1992). These effects are mediated via a rapid in-
crease of chloride-dependent conductance (cf. Mody et
al., 1994; Vautrin et al., 1994). Phasic and tonic types of
GABAA receptor-mediated inhibition have been de-
scribed in cerebellar granule cells (Brickley et al., 1996;
cf. Nusser et al., 1998). These cells, however, receive
GABAergic input only from a single cell type (Golgi
cells). Nevertheless, Nusser et al. (1998) showed that
exclusive extrasynaptic presence of the d-subunit-ex-
pressing GABAA receptors suggests that tonic inhibition
could be mediated mainly by nonsynaptic a6b2/3d recep-
tors, whereas phasic inhibition is due to the stimulation
of intrasynaptic GABAA receptors. It has been shown
(Herrero et al., 1999) that GABAA receptor activation by
GABA reduces and increases Glu release from cortical
neurons in culture, depending on the membrane poten-
tial.

d. 5-Hydroxytryptamine3 Receptors. 5-HT3 receptors
have a much lower affinity than 5-HT1 receptors (Hoyer,
1990) and have a high density in the area postrema, the
entorhinal cortex, and the amygdala (Kilpatrick et al.,
1990), indicating their role in transmission. The activa-
tion of 5-HT3 receptors makes the membrane permeable
to Na1 and K1 and mostly impermeable to divalent
cations. 5-HT3 receptor antagonists possess medical ap-
plications as antiemetics, anxiolytics, and antipsychot-
ics (cf. Göthert and Schlicker, 1997).

Electrophysiological evidence was obtained that the
stimulation of 5-HT3 receptors leads to the increased
release of GABA (cf. Peters et al., 1992; Piguet and
Galvan, 1994), DA (Zazpe et al., 1994), 5-HT (Martin et
al., 1992; Bagdy et al., 1998), and NE (Allgaier et
al.,1995).

e. P2X Receptors. Extracellular ATP acts as a signal
transmitter through P2X receptors, which are ligand-
gated ion channels, with a significant permeability to
Ca21, Na1, and K1 (cf. Bean, 1992; Ralevic and Burn-
stock, 1998). These receptors are distributed throughout
the body, including synapses where ATP is able to trans-
mit signals (cf. Sperlágh and Vizi, 1996; Sperlágh et al.,
1997, 1998; Khakh and Kennedy, 1998). Their locations
could be presynaptic and postsynaptic. P2X receptors
are also known for their high Ca21 permeability (Rogers
et al., 1997) and capacity to increase transmitter release
from nerve terminals (ACh: Sperlágh and Vizi, 1991;
Sun and Stanley, 1996; Glu: Gu and MacDermott, 1997;
Khakh and Henderson, 1998; DA: Zhang et al., 1996;
NE: Boehm, 1999).

4. Presynaptic Metabotropic Receptors. The activation
of membrane receptors expressed in the membrane is a
common mechanism through which cellular functions,
including neurotransmitter release, can be modulated
(Table 2). Metabotropic receptors are coupled to G pro-

teins. The latter are proteins (containing a-, b-, and
g-subunits) that are present in membranes of the cell
and transduce the receptor activation event to changes
in enzyme or ion-channel activity.

a. a2-Adrenoceptors. It is clear from their structure
and pharmacology that a2-adrenoceptors belong to the G
protein-linked family and, in most cell types, are coupled
to PTX-sensitive G proteins. It is well established that
some receptors inhibit adenylyl cyclase through the G
protein Gi. The activation of a2-adrenoceptor subtype
has been shown to inhibit adenylyl cyclase activity, de-
crease cAMP levels, and inhibit Ca21 channels in many
cell types, including neurons. cAMP has a facilitatory
effect on many transmitter systems, including the nor-
adrenergic system (Majewski et al., 1990). Therefore, it
has been suggested that a2-adrenoceptors may inhibit
transmitter release (e.g., NE) by inhibiting adenylyl cy-
clase (Schoffelmeer et al., 1986).

Pharmacologically, four subtypes of the a2-adrenocep-
tor have been identified: a2A, a2B, a2C, and a2D (Bylund
et al., 1988a,b; Bylund et al., 1991, 1992, 1994; Deupree
et al., 1996). Genetically, a2A and a2D subtypes were
shown as orthologs, with the a2A being present in hu-
mans (Bylund et al., 1988a, 1991), pig, and rabbit. Table
3 shows the presynaptic localization of different sub-
types of a2-adrenoceptors. It is interesting to note that
the a2B subtype of autoreceptors is mainly located in
varicosities of noradrenergic terminals in the periphery
and that a2A is mainly located in the CNS. Both sub-
types are involved in autoregulation of NE release. The
heteroreceptors expressed on varicosities synthesizing
ACh and 5-HT are of the a2A subtype (Table 3).

Presynaptic inhibitory a2-adrenoceptors are present
on serotonergic nerve endings of the human neocortex
(Raiteri et al., 1990a; Grijalba et al., 1996), and endog-
enous NE is able to control the release of 5-HT from
human and rat neocortex (Feuerstein et al., 1993).

b. Dopamine Receptors (D1, D2). DA receptors are
divided into two families designated D1 and D2. D1 re-
ceptors activate Gs proteins, and D2 receptors activate
Gi proteins (cf. Missale et al., 1998). Stimulation of D2

receptors results in the inhibition of the release of DA
from dopaminergic nerves (Hársing and Zigmond, 1997).
Activation of these presynaptic receptors inhibits the
release from their respective nerve terminals of other
neurotransmitters, such as NE, ACh, and GABA
(Hársing and Zigmond, 1997), from the striatum. Al-
though D2 receptors are coupled to inhibition of adenylyl
cyclase in some cell types (Onali et al., 1985), this path-
way is unlikely to be involved in the autoinhibition of DA
release (cf. Starke et al., 1989), because forskolin failed
to affect D2 receptor-mediated inhibition (Bowyer and
Weiner, 1989). Evidence was obtained that DA receptors
and transporters are located at more remote sites (Smi-
ley et al., 1994; Nirenberg et al., 1996, 1997). The stim-
ulation of D1 receptors increases Ca21 influx (cf. Missale
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et al., 1998) and increases GABA release from the stri-
atum (Floran et al., 1990; Hársing and Zigmond, 1997).

c. Muscarinic Receptors (M1, M2). There are at least
three muscarinic receptor subtypes (M1, M2, and M3)
involved in the modulation of transmitter release
(Starke et al., 1989; Raiteri et al., 1990c; Caulfield, 1993;
Caulfield and Birdsall, 1998). This receptor diversity
may to some extent explain the diverse range of signal
transduction mechanisms; these include inhibition of
Ca21 influx (Allen and Brown, 1993; 1996) and adenylyl
cyclase, stimulation of guanylyl cyclase, activation of
phospholipase C, and direct inhibition of Ca21 channels
and activation of K1 channels (cf. Felder, 1995). There is
reasonably good evidence that the M2 (M4) receptors
expressed on cholinergic (Lapshak et al., 1989; Quirion
et al., 1995; Allen and Brown, 1996) and noradrenergic
varicosities play a physiologically important role in the
modulation of transmitter release.

The muscarinic receptors that inhibit NE release ap-
pear to be of the M2 subtype in the periphery and CNS
(cf. Raiteri et al., 1990), but there is no such a modula-
tion in the hippocampus (Milusheva et al., 1994;
Jackisch et al., 1999b). The stimulation-evoked release
of NE from hippocampal slices is not modulated by mus-
carinic receptors, because noradrenergic boutons are not
equipped with muscarinic receptors (Milusheva et al.,
1994; Jackisch et al., 1999b). In contrast, there are mus-
carinic receptors, apparently of the M1 subtype, that
increase the release of NE (North et al., 1985; Raiteri et
al., 1990c) expressed on noradrenergic axon terminals in
the periphery. The M1 receptor is generally coupled to
PTX-insensitive G protein. Its activation results in for-
mation of inositol trisphosphate and diacylglycerol. In
contrast, the M2 receptor is coupled via PTX-sensitive G
protein to the N-type Ca21 channel (Hille, 1992). The
role of M4 in “negative feedback” modulation (McKinney

et al., 1993) has been questioned by the finding that
after a selective lesion of the fimbria fornix there was a
loss in M2 but an increase in M4 receptors (Wall et al.,
1994). The relative importance of these inhibitory and
stimulatory muscarinic receptors may vary in noradren-
ergic neurons from different locations.

d. 5-Hydroxytryptamine Receptors. The pharmacol-
ogy of 5-HT receptors has made tremendous progress in
the past decade. Although more than 14 identified re-
ceptors have been discovered (cf. Hoyer et al., 1994;
Murphy et al., 1999), only a few selective receptor ago-
nists or antagonists are available. It is generally ac-
cepted that [Ca21]o-dependent release of 5-HT from neu-
rons originated from brainstem raphe nuclei (Törk,
1990) can be modulated by presynaptic autoreceptors
(cf. Göthert and Schlicker, 1997) and heteroreceptors (cf.
Göthert and Schlicker, 1991). Evidence for inhibitory
presynaptic 5-HT autoreceptor was shown first by
Farnebo and Hamberger (1971b). The serotonin autore-
ceptors have been classified as 5-HT1B/D (Engel et al.,
1986; Maura and Raiteri, 1986). In guinea pig hippocam-
pal slice, the release of 5-HT is modulated via 5-HT1D

autoreceptors, as in humans (Maura et al., 1993; Galzin
et al., 1995), whereas they are of the 5-HT1B subtype in
rats. Activation of these receptors results in a decrease
of 5-HT release evoked by axonal stimulation (Maura
and Raiteri, 1986; Limberger et al., 1991).

5-HT1A receptors, which are also called autoreceptors,
are expressed on the soma and dendrites of the neurons
of the raphe nucleus. Their activation inhibits the firing
rate of the serotonergic fibers and their desensitization
after long-term treatment with 5-HT uptake blocker
restores action potential firing. Therefore, the 5-HT1A

receptor plays an important role in the effect of antide-
pressants (Mongeau et al., 1997). 5-HT1A knockout mice

TABLE 3
Subtypes of presynaptic auto- and hetero-a2-adrenoceptors expressed on axon terminals and on locus ceruleus

For expression of mRNA of a2-adrenoceptor subtypes, see Winzer-Sershan et al. (1997a,b).

Subtype Reference

Heteroceptor
Cholinergic

Ileum (guinea-pig Auerbach plexus) a2A Blandizzi et al., 1991, 1993
Serotonergic

Synaptosome (rat brain) a2A Gobbi et al., 1990
Autoreceptor

Noradrenergic
Ileum (guinea pig) a2B Blandizzi et al., 1993
Thymus (rat) a2B Haskó et al., 1995
Spleen (rat) a2B Elenkov and Vizi, 1991
Heart (guinea pig) a2B Vizi ES (unpublished)

(human) a2B Vizi and Lendvai, 1997; Sato et al., 1999
Hippocampus (rat) a2A Kiss et al., 1995
Hypothalamus (rat) a2A Karkanias and Etgen, 1993; Sperlágh et al., 1998
Cortex (rat) a2A Trendelenburg et al., 1993, 1994

(human) a2A Raiteri et al., 1992; Sastre and Garcia-Sevilla, 1994a,b; Garcia-Sevilla et al., 1999
Spinal cord (rat) a2A Umeda et al., 1997

(human) a2A Lawhead et al., 1992
Synaptosome (rat brain; rat) a2A Gobbi et al., 1990
Locus ceruleus (rat) a2A Mateo et al., 1998
Arteries (human gastric and ilecolic) a2A Guimaraes et al., 1998
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had elevated anxiety as a consequence of increased 5-HT
release (cf. Murphy et al., 1999).

e. Metabotropic Glutamate Receptors. The presence
of G protein-coupled glutamate receptors (metabotropic
Glu receptors) has been described, and since 1991 (cf.
Conn and Pin, 1997), eight receptors have been discov-
ered and classified into three groups based on their
linkage to second messenger systems and their pharma-
cology: group I acts via the phosphoinositol system, and
groups II and III inhibit adenylyl cyclase. In addition,
the stimulation of receptors of these three groups di-
rectly influences voltage-gated Ca21 and K1 channels
through their G proteins, but their physiological corre-
late has not yet defined.

In a calyx-type nerve terminal in the brain stem (Ta-
kahashi et al., 1996), the activation of metabotropic Glu
receptors has been observed to inhibit Ca21 currents,
rather than activation of presynaptic K1 currents, and is
responsible for presynaptic inhibition of transmitter re-
lease. Glu and quisqualate inhibit neuronal Ca21 cur-
rents via a G protein-linked mechanism (Lester and
Jahr, 1990), and this action may provide negative feed-
back control of Glu release (Terrian et al., 1991; Barnes
et al., 1994; Malva et al., 1996).

f. g-Aminobutyric AcidB Receptors. The metabotropic
GABAB receptors are widely distributed in the CNS,
where they are located (Bowery, 1993; Billinton et al.,
1999) at both presynaptic and postsynaptic locales (Bill-
inton et al., 1999), inhibiting the presynaptic release of
neurotransmitters (see Table 2) and the postsynaptic
activity of certain K1 channels (cf. Misgeld et al., 1995).
The activation of presynaptic GABAB receptors is long-
lasting, being mediated through G protein-coupled pro-
cesses (cf. Mody et al., 1994), and results in an inhibition
of Ca21 and activation of K1 conductances (Bowery,
1993; Billinton et al., 1999). GABAB receptors may in-
fluence K1 channels through a physical coupling to the
channel, but this effect is not mediated via a G protein
intermediate (cf. Schousboe, 1999). The two isoforms
(GBR1a and GBR1b) of GABAB receptors seem to be
associated with presynaptic and postsynaptic elements
in rat and human cerebellum (Billinton et al., 1999).

g. Adenosine A1 Receptors. Adenosine inhibits the
evoked release of many neurotransmitters, both from
peripheral nerves and in the CNS (see Table 2). The
inhibitory effect of adenosine on NE (Fredholm, 1976;
Fredholm and Dunwiddie, 1988) and ACh (Vizi and
Knoll, 1976; Sperlágh et al., 1997) release has been
particularly well described and proved to be mediated by
adenosine A1 receptors. Adenosine A1 receptors have the
general structure expected of G protein-linked receptors,
and there is evidence that Gi proteins are involved in the
inhibitory effects of adenosine on neurotransmitter re-
lease, inhibiting cAMP production and N-type Ca21

channels and activating K1 permeability. In addition,
there is some evidence that the activation of high-affin-
ity adenosine A2A receptors increases the release of dif-

ferent transmitters (Glu: Gu and MacDermott, 1997;
ACh: Cunha et al., 1994; DA and NE: Sebastiao and
Ribeiro, 1992) and has an effect on Gs protein and sub-
sequently increases cAMP level. In contrast, its stimu-
lation reduces the release of GABA from the recurrent
collaterals of striatopallidal neurons (Kirk and Richard-
son, 1994).

The basal level of adenosine (20–300 nM) in the ex-
tracellular space is able to influence the activity of the
neurons that are equipped with abundant adenosine A1

and A2A receptors.
The key question is: What is the role of extracellular

adenosine either released from cells (cf. Mitchell et al.,
1993; Thompson et al., 1993) or decomposed from ATP
(ADP and AMP: Sperlágh and Vizi, 1996), especially
during ischemia? It seems that adenosine, via activation
of A1 heteroreceptors being able to inhibit the release of
different transmitters in the CNS (e.g., ACh: Cunha et
al., 1994), plays an important role in dampening neuro-
nal firing in epilepsy and ischemia, and it is neuropro-
tective (Thompson et al., 1993).

h. P2Y Receptors. Metabotropic P2Y receptors are
coupled with Gq/11, Gs, and Gi proteins (cf. Ralevic and
Burnstock, 1998). The stimulation of P2Y receptors ac-
tivates phospholipase C, releases intracellular Ca21,
and is coupled to adenylyl cyclase (cf. Khakh and
Kennedy, 1998). It has been shown that P2Y receptors
are involved in the reduction of NE release from rat
cortical (von Kügelgen et al., 1994) and hippocampal
(Koch et al., 1997) slices.

B. Plasma Membrane Transporters. Na1/Cl2-depen-
dent transporters, such as DA, 5-HT, NE, GABA, gly-
cine, taurine, proline, and betaine, are members of a
large family of Na1/Cl2-containing putative transmem-
brane domains (Kanner and Schuldiner, 1987; Amara
and Kuhar, 1993; Lester et al., 1994; Nelson, 1998).
These ion-coupled transporters are “electrogenic” and
lead to conductive properties (cf. Lester et al., 1996).
These transporters are different from that expressed in
the membrane of vesicles (Henry et al., 1998). It is
generally accepted that these high-affinity transporters
located on the nerve terminals and surrounding glial
cells (cf. Nelson, 1998) control the temporal and spatial
concentration of transmitters released into the intrasyn-
aptic and extrasynaptic spaces via rapid uptake into
nerve terminals. For example, in tissue with dense nor-
adrenergic and GABAergic innervation, as much as 70
to 80% of released NE (Bönisch and Brüss, 1994) and
GABA (Iversen and Kelly, 1975) may be recaptured,
indicating that the transporter plays an important role
in setting the concentration of transmitter in the extra-
cellular space. Thus, plasma membrane transporters
maintain low intrasynaptic and extrasynaptic neuro-
transmitter concentrations, thereby regulating synaptic
and nonsynaptic efficacy; many of the transporters have
been implicated as important sites for drug actions.
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1. Characteristics of Transporters.
a. Protein Kinase C Dependence. It has been sug-

gested that protein kinase C (PKC) plays a role in acute
modulation of Na1/Cl2-coupled transporters, including
GABA, DA, and 5-HT (Corey et al., 1994; Osawa et al.,
1994; Zhang et al., 1997; Ramamoorthy et al., 1998).
Activation of PKC by phorbol ester inhibits the uptake of
GABA (Osawa et al., 1994), DA (Zhu et al., 1997), 5-HT
(Qian et al., 1997; Ramamoorthy et al., 1998), and NE
(Apparsundaram et al., 1998).

It has been suggested (cf. Majewski and Iannazzo,
1998) that PKC, activated by diacylglycerol and/or ara-
chidonic acid, through presynaptic receptors (M1, angio-
tensin, bradykinin) or nerve depolarization is involved
in the facilitation of transmitter release from neurons.
Majewski and Ianazzo (1998) suggested that this facili-
tation is mediated by the phosphorylation of proteins
involved in vesicle dynamics, although a role for ion
channels cannot be ruled out. Nevertheless, taking into
account recent studies (cf. Shinomura et al., 1999), it
seems most likely that PKC does not directly affect the
release process; more likely it blocks the uptake, thereby
more transmitter remains extracellular, once transmit-
ter has been released.

b. Voltage Dependence and Modulation by Receptors. It
has been shown (Lester et al., 1994; Sonders et al., 1997;
Zahniser et al., 1998) that the transporter velocity is in-
creased by hyperpolarization of the membrane and is de-
creased by depolarization (Sonders et al., 1997). A possible
interaction between transporter and auto- or heterorecep-
tors is that function of the uptake system is a voltage-
dependent process and membrane potential can be influ-
enced through receptor activation. For example,
stimulation of D2 receptors opens inwardly rectifying po-
tassium channels, resulting in transient hyperpolarization
(Lacey et al., 1987). Thus, hyperpolarization produced by
stimulation of receptors expressed on varicosities may re-
sult in an increase in the velocity of the uptake process,
reducing the amount of transmitter in the extracellular
space. This is supported by the findings of Dickinson et al.
(1998) that in genetically engineered mice (D2

2/2), the DA
transporter (DAT) function was lacking, compared with
D2

1/1 mice, and that raclopride (D2 receptor antagonist)
decreased the activity of the transporter in D2

1/1 mice.
That DAT can be modulated by D2 autoreceptors has al-
ready been suggested (Meiergerd et al., 1993). In addition,
it has been shown (Barbour et al., 1988) that at high
extracellular K1 concentrations (i.e., under conditions in
which the cell is depolarized), Glu uptake is abolished
(Szatkowski et al., 1990) and a marked release of Glu
occurs.

Because a discrepancy was observed between transport
rates and substrate-gated ion fluxes (e.g., Na1) determined
for different substrates, it was suggested (Sitte et al., 1998)
that plasma membrane amine transporters operate in a
channel mode. The releasing action would depend on cur-
rent induced by the substrate rather than on their uptake

rate. Na1 would be the potential charge carrier, which
could trigger carrier-mediated release of DA by enhancing
[Na1]i at the cytoplasmic site of the DAT (Levi and Raiteri,
1976; Liang and Rutledge, 1982; Bönisch, 1986; Yamazaki
et al., 1996).

c. Temperature Dependence. The capacity of inward
transport of transmitters depends on the temperature;
at low temperatures, transporters fail to operate (Lind-
mar and Löffelholz, 1972; Asztely et al., 1997; Vizi,
1998). When the temperature is reduced from 37°C to
25°C, the DA uptake by striatal preparations results in
a mild reduction in Km and a dramatic decrease in Vmax
(Liang and Rutledge, 1982; Bonnet et al., 1990). Indeed,
desipramine, an uptake blocker, fails to increase NE
release in response to axonal stimulation when the tem-
perature was reduced to 17°C (Vizi, 1998). A 10°C in-
crease in temperature doubled the turnover rate of GAT
(Schwartz and Tachibana, 1990). At a low temperature
(17°C), the exocytotic release of NE, DA (Vizi, 1998), and
GABA (Vizi and Sperlágh, 1999) is not affected or in-
creased; the carrier-mediated release of different trans-
mitters (NE, DA, GABA) evoked by ischemia or ouabain
administration was completely blocked (Vizi, 1998;
Toner and Stamford, 1999; Vizi and Sperlágh, 1999).
This fact indicates that the carrier-mediated release of
transmitters is of cytoplasmic origin.

2. Substrate Selectivity.
a. Norepinephrine Transporter. NE transporters

(NETs) located in the neuronal plasma membrane me-
diate the removal of NE from the extracellular space (cf.
Graefe and Bönisch, 1988; cf. Trendelenburg, 1991; Nel-
son, 1998), limiting the activation of auto- and hetero-
adrenoceptors expressed on different neurons by reduc-
ing the extracellular concentration of NE and thereby
the amount of NE available for diffusion. NETs also
transport structurally similar molecules, including DA,
tyramine, and amphetamine (Bönisch, 1986; Bönisch
and Brüss, 1994). Similar to other transporters, NETs
use the energy of the transmembrane Na1 gradient to
take up NE inside the neuron from the intrasynaptic
and/or extrasynaptic space. The direction of transport
can be reversed by inward transport of any substrate (cf.
Chen and Justice, 1998). At a high frequency of stimu-
lation, so much transmitter is being released that the
transporter capacity (which has been used up) becomes
fully exploited and unable to continue to clear the extra-
cellular space.

b. Dopamine Transporter. DAT is a plasma mem-
brane glycoprotein that reaccumulates DA released into
the synaptic and extraneuronal space by varicose axon
terminals and thereby regulates the lifetime of DA in
the extracellular space (Amara and Kuhar, 1993; Page
et al., 1998). The uptake process depends on Na1 and
Cl2. In line with these observations using electron mi-
croscopy, it has been shown (Hoffmann et al., 1998) that
DATs are not located at the synaptic density but are
confined to perisynaptic areas, implying that DA dif-
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fuses away from the synapse. Besides its physiological
role, DAT is a pharmacological target of cocaine and
amphetamine in rat (Heikkila et al., 1975a,b) and in
mammalian cells transfected with human DAT (Sitte et
al., 1998). In an elegant experiment, it was shown in
homozygote mice (DA2/2) that DA released from nigro-
striatal varicose axon terminals into the extrasynaptic
space persists at least 100 times longer than in wild-type
animals and that diffusion is the only mechanism for
clearance (Gainetdinov et al., 1998). Amphetamine
failed to release DA from homozygote mice striatum
(Giros et al., 1996). In addition, it has been shown (Giros
et al., 1996) that DAT is an obligatory target of cocaine
and amphetamine, because these drugs have no effect on
locomotor activity or DA release and uptake in DAT
knockout homozygote mice. These findings indicate that
blockade of uptake allows DA released from nonsynaptic
varicosities to reach a much higher concentration and to
remain increased in the extracellular space for a much
longer time than under conditions in which the inacti-
vation by transporter is not inhibited.

c. Glutamate Transporter. The excitatory amino acid
Glu is the most prevalent transmitter in the brain; its
effect on postsynaptic receptors is limited by uptake
process (Erecinska, 1987) and by diffusion of Glu from
the cleft. The removal of Glu from the extracellular fluid,
limitation of its action occurs by uptake and by diffusion
(Tong and Jahr, 1994). This is accomplished by a trans-
porter in the plasma membrane of both neurons and
astrocytes (Brooks-Kayal et al., 1998; Gelagashvili and
Schousboe, 1998). Electrophysiological evidence was ob-
tained that the block of Glu transporters potentiates
postsynaptic excitation of Glu receptors (Tong and Jahr,
1994). The cellular uptake of Glu is driven by the elec-
trochemical gradients of Na1 and K1 and is accompa-
nied by voltage and pH changes. The Glu transporter
limits Glu concentration in the synapse and spillover
from one synapse to another.

d. g-Aminobutyric Acid Transporter. The role of
GABA transporter is to terminate synaptic events
evoked by GABA released from GABAergic terminals.
GABA uptake inhibitors increase and prolong GABAB
receptor-mediated transmission (Dingledine and Korn,
1985; Isaacson et al., 1993). A high-affinity transporter
for GABA (Km 5 0.01–1 mM) has been shown in the CNS
(Iversen and Kelly, 1975). Blockade of GABA uptake,
which reduces the amount available for diffusion and
thereby limits the remote effect of GABA, significantly
enhanced the slow IPSC (Isaacson et al., 1993) that
represents an extrasynaptic effect. According to
Schwartz (1987), the reverse operation of the carrier can
raise the GABA sufficiently high to provide extracellular
concentration of transmitter to a level that would affect
receptors.

e. Serotonin Transporter. The serotonin transporter
is also a member of a superfamily of Na1- and Cl2-
dependent neurotransmitter transporters, which are im-

portant targets for both drugs of abuse and antidepres-
sant compounds (Amara and Kuhar, 1993; Blakeley et
al., 1994).

5-HT transporter 2/2 mice demonstrated a complete
lack of high-affinity 5-HT uptake and have increased
extracellular 5-HT levels and an increased anxiety-re-
lated behavior (cf. Murphy et al., 1999). In these trans-
porter-deficient mice, no change in response to (1)-am-
phetamine was found when the locomotor stimulation
was studied. In contrast, the effect of cocaine on behav-
ior was increased (Sora et al., 1998), and the locomotor-
stimulatory effect of 3,4-methylenedioxymethamphet-
amine (Ecstasy) was reduced.

III. Nonsynaptic Varicosities

It is well known that axons both in the CNS and in the
autonomic nervous system form varicose (boutons-en-
passant) branches. The varicose axon terminals, which
in the overwhelming majority do not make synaptic con-
tacts, are the main target of presynaptic modulation. A
substance released in or diffusing to the vicinity of the
axon terminal can modulate the release of the principal
transmitter or that of another modulator provided the
axon is equipped with sensitive receptors. Many authors
(cf. Langer, 1977; cf. Starke, 1977) support the idea that
presynaptic modulation is a question of secretion cou-
pling. However, others (Alberts et al., 1981; Stjärne,
1981) suggest that mechanisms related to the failure of
varicosity invasion are responsible for presynaptic inhi-
bition. It was suggested that presynaptic inhibition is
the reduction in the safety factor for terminal varicosity
invasion by the axonal nerve impulse (Stjärne, 1981,
1989). The release of NE from sympathetic nerve termi-
nals by the invading nerve impulse is a very uncertain
process, with a high proportion of failures at any indi-
vidual varicosity (Blakeley and Cunnane, 1979), so that
any procedure marginally reducing the chance of inva-
sion may have profound effects. Alberts et al. (1981)
suggested that varicosity hillocks could control the ex-
citability of the varicosity and the invasion of the more
distal parts of the branch. The wave of depolarization
arriving at the varicosity hillock reaches the firing level
and generates a propagating impulse in the next inter-
varicose section. However, this site of action seems very
unlikely because it is based on acceptance that the
method of action potential conduction in a varicose ter-
minal is similar to that in a neuron, and this is not the
case. The action potential attempts to invade the whole
branch without alternating depolarization with action
potential generation and intervaricosital axonal conduc-
tion. The bouton is small; therefore, the action potential
arriving at the first and consecutive boutons tries simply
to depolarize and pass them. Although methods for anal-
ysis of the mode of impulse conduction in boutons-en-
passage terminals are not available, it is tempting to
speculate that the difference in size between the cross
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section of the intervaricosital axonal part and the bouton
makes it difficult for impulses to invade the whole
branch. The sudden change in size of the varicose branch
at the bouton might produce changes in, for example, the
length constant (Vizi, 1984) and thereby influence the
length of invasion of the rather lengthy arborization.

There is convincing neurochemical evidence, mainly
based on studies with synaptosomal preparations and
potassium-induced release, that the site of action is on
the axon terminals. Therefore, there is general agree-
ment that secretion coupling is affected by the modula-
tors (cf. Langer, 1977; cf. Starke, 1977).

Although the axo-axonic synapse is the anatomical
correlate of presynaptic modulation, convincing anatom-
ical evidence is available that noradrenergic (cf.
Oleskevich et al., 1989), serotonergic (Descarries et al.,
1975; Seguela et al., 1989; Oleskevich et al., 1991), do-
paminergic (Descarries et al., 1991), and cholinergic
(Descarries et al., 1997) varicosities in the CNS in a
rather high percentage do not make synaptic contact. A
very low synaptic incidence of monoaminergic innerva-
tion has already been documented in the adult rat cortex
(Descarries et al., 1975, 1977; Beaudet and Descarries,
1978; Seguela et al., 1990, 1989), hippocampus (Oleskev-
ich et al., 1989; Daszuta et al., 1991; Umbriaco et al.,
1995), dorsal horn of the spinal cord (Ridet et al., 1993),
and cerebellum (Beaudet and Sotelo, 1981).

Although the incidence of nonsynaptic nerve termi-
nals amounted to 64% for 5-HT and 57% for NE in the
dorsal horn of the spinal cord (Ridet et al., 1993), in the
ventral horn (Privat et al., 1988) the synaptic contacts
were the predominant, indicating that nonsynaptic com-
munication is characteristic of the dorsal horn, and low-
affinity 5-HT2 receptors are numerous in the ventral
horn but scarce in the dorsal horn (Pazos et al., 1985,
Pazos and Palacios, 1985).

Recent immunoelectromicroscopic studies have re-
vealed a low incidence (14% in the cerebral cortex, 7% in
the hippocampus, and 9% in the neostriatum) of synap-
tic specializations of cholinergic varicosities using cho-
lineacetyltransferase immunostaining (Descarries et al.,
1997). A similar observation was made by Kása et al.
(1995, 1997) in the main olfactory bulb.

Although anatomical studies reveal the presence of
nonsynaptic varicosities, functional studies are required
to establish the precise mode of chemical transmission.

Indeed, strong neurochemical evidence is available
that nonsynaptic varicosities release transmitters. Des-
carries et al. (1977, 1980, 1987) demonstrated that non-

synaptic varicosities in the CNS appear to have all the
apparatus normally associated with synaptic release.
Subsequently, ultrastructural examination of noradren-
ergic varicosities in several tissues confirmed that both
large and small vesicles could undergo exocytosis in the
absence of structurally specialized active zones (Thure-
son-Klein and Stjärne, 1981; Thureson-Klein, 1983,
1984; Zhu et al., 1986). In addition, morphological evi-
dence was provided (Buma, 1989) for exocytosis release
sites that do not make synaptic contact in rat median
eminence and mesencephalic central gray substance.

The hippocampus is very rich in noradrenergic inner-
vation originating from the locus ceruleus (Loy et al.,
1980). Fine varicose axons are present in every layer of
the hippocampus, but the overwhelming majority of var-
icosities (2.1 million/mm3) do not make synaptic contact
(Table 4). This means that each varicosity, provided they
are evenly distributed, may control a volume of ;500
mm3. The distance between varicosities plays an impor-
tant role in setting the concentration of transmitters in
the extracellular space, because the concentration of
transmitter drops in a function of 3. This means that
;10 mm is the average distance between each varicosity
(Fig. 2), but they are not evenly distributed, indicating
that there are regions in which the local concentration of
transmitters could be much higher.

Descarries et al. (1977) presented evidence that like
the hippocampus, the cerebral cortex has rather dense
noradrenergic innervation with remarkably uniform
distribution. The latter is different from that of hip-
pocampus. The cerebral cortex contains 346 noradrener-
gic varicosities/mm2 and .6000/mm3; therefore, each
varicosity may control a volume of 150.000 mm3.

This arrangement suggests that every varicose ar-
borization equipped with heteroreceptors may lie within
66 mm of a noradrenergic varicosity devoid of synaptic
specialization (Fig. 1).

With this calculation, we anticipated that noradren-
ergic varicosities in the hippocampus and cortex are
evenly distributed, but this is certainly not the case. Of
course, the extracellular concentration of transmitters
may vary from site to site and from time to time, because
there is a possibility of spatial and temporal summation
of transmitters released from different varicosities.

The density of serotonergic varicosities varies be-
tween 0.24 and 2 million/mm3 (Beaudet and Sotelo,
1981; Table 4) in the cerebellar cortex.

TABLE 4
Density of varicosities in the CNS

Transmitter Location No. of varicosities/mm3 Reference

Noradrenergic Hippocampus 2.1 million Loy et al., 1990
Cortex (cerebral) 6000 Descarries et al., 1977

Serotonergic Cerebellar cortex 0.24 million Beaudet and Sotelo, 1981
Cerebellar cortex (agranular) 2 million Beaudet and Sotelo, 1981
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IV. Extracellular Space as a Communication
Channel of Nonsynaptic Interaction

Microdialysis studies show that virtually all the
transmitters in the CNS are present in the extracellular
space. A very important factor that determines the peak
concentration of transmitter in this space is its volume
accessible for the transmitter. It has been shown (Ni-
cholson, 1985; cf. Nicholson and Rice, 1991) that this
space is ;12 to 25% of the brain volume. Activity-in-
duced changes of extracellular space in excitable tissues
are a well known phenomenon. In response to neuronal

activity and in parallel with an increase in extracellular
K1 concentration, shrinkage of the extracellular space
can be observed in vivo (Svoboda and Sykova, 1991; cf.
Holthoff and Witte, 1998). This, in fact, can influence the
concentration of transmitters released into the extracel-
lular space.

Another important factor is the amount of transmitter
released from axon terminals. A critical aspect of non-
synaptic interaction theory is that a given neuron with
its numerous nonsynaptically ending varicosities (which
could be a few hundred thousand!) need not, by itself, be
of sufficient strength to significantly change the extra-
neuronal concentration of the transmitter. If that neu-
ron is fired at the same time as a number of other
neurons, their combined action may be able to increase
transmitter concentration in the extracellular space to
such a level that a large field will be influenced; of
course, only those neurons whose terminals or dendrites
are equipped with receptor sensitive to the transmitter
are affected. If, in contrast, a given neuron fires asyn-
chronously with most of the other neurons, there will be
no effect on the target cell. Table 5 shows the extracel-
lular concentration of different transmitters in the ex-
tracellular space determined by microdialysis.

Diffusion of transmitters through the extracellular
space in brain slices (McBain et al., 1990) is anisotropic
in both hippocampus and cortex (Nicholson and Syková,
1998), indicating some specificity. The half-life of extra-
cellular 5-HT is 0.21 s in the substantia nigra and 0.09 s
in the dorsal raphe nucleus (Bunin et al., 1998), suggest-
ing that in the dorsal raphe nucleus, the nonsynaptic
transmission is a more likely mode of communication
than in the substantia nigra.

Richfield et al. (1989) succeeded in showing that there
are differences in anatomical distributions and affinity
states of D1 and D2 receptors in the rat brain. The
proportion of high-affinity sites is quite different be-
tween the two subtypes. The high affinities for DA binding

FIG. 2. Scheme of varicose axon terminals. The average distance be-
tween varicosities in the hippocampus is 10 mm (for details and calcula-
tions, see the text), and in the cortex, the average distance is 66 mm,
provided the varicosities are evenly distributed, but this is not the case.
According to Schneider et al. (1994), DA released in response to axonal
activity is able to diffuse ;50 mm. This means the transmitter is released
from only one varicosity; it diffuses cylindrically and the concentration
drops in a function of 3. However, when the neurons fire in concert, the
concentration can be much higher depending on the spatial distribution
of varicosities.

TABLE 5
Concentrations of transmitters in the vesicle, synaptic cleft, and extracellular space

Concentration Transmitter Location Reference

Vesicle 90 mM DA Brain (rat) Floor et al., 1995
10 mM NE Hypothalamic synaptosome West and Fillenz, 1980
90 mM 5-HT Dorsal raphe Bunin and Wightman, 1998, 1999
60–210 mM Glu Hippocampus Burger et al., 1989; cf. Clements, 1996
60 mM ACh Neuromuscular junction Van der Kloot and Molgo, 1994

Synaptic cleft 6 mM 5-HT Dorsal raphe Bunin and Wightman, 1998
;1 mM ACh Neuromuscular junction Matthews-Bellinger and Salpeter, 1978; Kuffler and

Yoshikami, 1975
;1–5 mM GABA Hippocampus Clements, 1996
;1 mM Glu Hippocampus Clements et al., 1992

Extracellular space 55 nM 5-HT Dorsal raphe substantia nigra Bunin and Wightman, 1998, 1999; Bunin et al., 1998
10 mM GABA Hippocampus Destexhe and Sejnowski, 1995
0.2–0.8 mM GABA Hippocampus Lerma et al., 1986
5–55 nM NA Cortex Allgaier et al., 1992
100 nM NA Hippocampus Kiss et al., 1995
0.1–1 nM ACh Hippocampus Moor et al., 1995
3 mM DA Striatum Taber and Fibiger, 1994; Benveniste and Hüttemeier, 1990
0.1–1 mM DA Striatum Kawagoe et al., 1992
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to receptors in striatal slices were near 40 nM (range, 9–74
nM), and the low affinities for DA were near 2 to 4 mM.

One question regarding the cellular location of D1 and
D2 receptors is whether they are both located on the same
neuron and/or they are expressed presynaptically or
postsynaptically, synaptically or nonsynaptically. For the
time being, no method is available to answer these ques-
tions. It is therefore a plausible assumption that the affin-
ity of DA for the DA receptors and the DAT and nonsyn-
aptic DA concentration should be related to each other.

It has been speculated that the synaptic DA concen-
tration is in the range of 10 mM and that DA is accord-
ingly able to act on the low-affinity states of the recep-
tors (Gonon and Buda, 1985).

The release of GABA, reaching a peak concentration of
;1 mM (Clements et al., 1992), would correspond to
3.000 to 7.500 molecules of transmitter released (Des-
texhe and Sejnowski, 1995). A spillover of GABA may
account for differences between inhibitory responses in
the hippocampus and thalamus (Destexhe and Se-
jnowski, 1995). It is highly probable that diffusion of
transmitter between two neighboring synapses (i.e.,
cross-talk; Barbour and Häusser, 1997) plays an impor-
tant role in long-term potentiation and long-term de-
pression phenomena (Kullmann et al., 1996) in which
associativity and cooperativity of synapses are impor-
tant. This may be also involved in the activation of
nearby synapses (cf. Barbour and Häusser, 1997), affect-
ing presynaptic and postsynaptic ionotropic receptors
and producing electrophysiologically detectable changes
in synaptic current waveform and metabotropic recep-
tors that may not produce a direct electrical action.
However, the fact that low-affinity receptors are ex-
pressed in the synapse makes it seems likely that the
cross-talk will only occasionally affect them, with the
concentration of the transmitter outside the synaptic
gap being much lower than that in the gap (;100 mM).

A similar observation was made with DA in the stri-
atum (Wightman et al., 1988; Van Horne et al., 1992).
DA released from the varicose axon terminals of the
nigrostriatal pathway may be able to diffuse far away
from release sites (Schneider et al., 1994) and inhibit the
release of ACh from cholinergic interneurons. However,
all of the observations made with microdialysis suggest
that transmitters (NE, DA, 5-HT, and ACh) released
mainly from nonsynaptic terminals are present in the
extracellular space.

V. Nonsynaptically Expressed Receptors and
Membrane Transporters of High Affinity as

Therapeutic Targets

Many instances have been found in which the distri-
bution of the receptors does not match the distribution of
transmitter (Herkenham, 1987, 1991). Several lines of
data (Table 6) indicate there are extrasynaptic receptors
and transporters in different brain regions (Somogyi et

al., 1989; Baude et al., 1995; Yung et al., 1995; Venkate-
san et al., 1996; Descarries et al., 1997; Nusser et al.,
1998) that are accessible for endogenous ligands. These,
being located nonsynaptically, however, possess a high-
affinity property and may play a physiological role in
accepting chemical messages from distant neurons.
Even when the synaptic and nonsynaptic receptors do
not differ in affinity, however, they may be used with a
different level of neuronal activity. Somogyi et al. (1989)
showed in cerebellum that at a low frequency of neuro-
nal firing, GABA released into the synaptic cleft acts at
the synaptic junctions. The small amount of GABA can
be removed by the transporter without reaching the
extrasynaptic receptors. However, at increased excita-
tory input, GABA released in a much higher amount
may reach remote receptors of nonsynaptic location.

In contrast, there are heteroreceptors or transporters
expressed on some neurons that are not accessible by
transmitters. These receptors and transporters, in addi-
tion to those previously mentioned, are of pharmacolog-
ical importance because they may never reach effective
concentrations of the appropriate endogenous ligands in
vivo but they could be the target for drugs or they could
be occupied by endogenous ligands in toxic conditions.

A. Nonsynaptic Receptors

To act effectively at a distance and at a low concen-
tration, transmitters require high-affinity receptors
(Isaacson et al., 1993). The affinity of receptors ex-
pressed in the synapse cannot be determined, because
there is no method available to separate intrasynaptic
and extrasynaptic receptors. Katz and Miledi (1977)
showed that a low concentration of ACh has a minimal
effect on the postsynaptic nAChRs, which are known to
possess a low affinity for ACh (Colguhoun and Odgen,
1988). Because the intrasynaptic concentration of trans-
mitters (see Table 5) is in the range of 0.01 to 6 mM
(Kuffler and Yoshikami, 1975; Clements et al., 1992;
Bunin and Wightman, 1998, 1999), the postsynaptic re-
ceptors are relatively insensitive and are of low affinity.
It is therefore suggested that these receptors cannot be
affected by drugs being distributed in the body in low
concentrations; drugs may be able to affect these intra-
synaptic receptors only at extremely high and toxic con-
centrations. These receptors are not targets for remote
(i.e., nonsynaptic) modulation or remote signal trans-
mission. However, there are receptors and transporters
expressed on varicosities without synaptic contact that

TABLE 6
Immunocytochemical localization of nonsynaptic receptors

Receptor Location Reference

GABAA Cerebellum Somogyi et al., 1989
GABAA Cerebellum Nusser et al., 1998
AMPA Hippocampus Baude et al., 1995
D1, D2 Basal ganglia Yung et al., 1995
a2A Visual cortex Venkatesan et al., 1996
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are easily reached by endogenous substances (i.e., trans-
mitters, modulators, and so on) and drugs (antidepres-
sants, nicotine), and they might be affected by relatively
low (0.01–1 mM) concentrations of drugs (Table 7) with a
selective effect on receptors (Vizi, 1984a; Vizi and Lábos,
1991). Dense nonsynaptic localization of 5-HT1 receptors
was shown (Kia et al., 1996) in substantia nigra pars
reticulata, where the extracellular concentration of
5-HT is 55 nM (Bunin and Wightman, 1999). Therefore,
it is suggested that receptors located on varicosities
without making synaptic contact seem likely to be the
target for exogenous compounds (medications) acting as
agonists, partial agonists, or antagonists (Vizi and Lá-
bos, 1991). Indeed, several drugs used in clinical practice
have been developed on the concept of presynaptic mod-
ulation of chemical transmission (cf. Langer, 1997;
Langer et al., 1998).

B. Nonsynaptic Transporters

There are only few reports of transporter density or
localization in the CNS. These data will help us to better
understand the nonsynaptic interactions between neu-
rons. It is possible that there are regions in which the
density of a transporter is much lower than that in other
regions; therefore, remote interaction in this region is
more likely. It has been shown (Descarries et al.,1977,
1995) that labeled 5-HT and NE can be taken up from
the extracellular space by varicosities without making
synaptic contact. Since then, much evidence has been
provided (Lester et al., 1996) that transmitter-selective
transporters are expressed on nonsynaptic varicosities
and are able to take up transmitters from the extracel-
lular space, limiting the concentration of transmitter
released from varicosities. Transporters regulate the
lifetime of the transmitter in the extracellular space and
thus the distance it can diffuse away from its release
site. Therefore, the area over which a transmitter re-
leased into the extracellular space can act and the con-
centration of transmitter may vary from region to re-
gion, depending on the local density of transporter. It
has been shown that Glu is removed from the synapse
into the nerve terminal and into the glia by a low-
affinity transporter (Gelagashvili and Schousboe, 1998).
Similarly, the nonsynaptic and synaptic GABA trans-

porters restrict fast GABAA receptor-mediated trans-
mission, preventing its spillover, and spread to reach
remote presynaptic GABAB receptors.

The importance of noradrenergic, serotonergic, and
dopaminergic transporters has long been appreciated
(e.g., the therapeutic effect of antidepressants is based
on their blocking action on these transporters; cf. Barker
and Blakely, 1995). Antidepressants (e.g., imipramine,
fluoxetine), acting at low concentrations on nonsynapti-
cally located membrane transporters of high affinity, are
able to inhibit the uptake of NE and/or 5-HT, thereby
increasing the concentration, life span, and transmis-
sion distance of the transmitter released into the micro-
environment.

The diffusion of DA over long distances (a few milli-
meters) through a large volume of striatal tissue was
observed (Doucet et al., 1986; Schneider et al., 1994)
when either the nigrostriatal dopaminergic pathway
was destroyed or the reuptake was inhibited. In these
experiments in intact animals, DA released in response
to neuronal activity diffused ;50 mm in the striatum
(Schneider et al., 1994).

C. Nonsynaptic Interaction between Neurons without
Receptors

Within the past few years, evidence has accumulated
that NO and carbon monoxide are present in the CNS
(cf. Szabó, 1996; Moncada et al., 1997) and are able to
operate as signal transmitters. Nevertheless, they have
not yet met all criteria necessary to be classified as
transmitters. They are not synthesized in synaptic ves-
icles, but they are liberated as gases and then they are
simply diffusing far away from their synthesis site, able
to activate G proteins of remote cells and influence
transporters. It has been shown that the free radical NO
might play a role as an intercellular messenger in the
brain (Garthwaite et al., 1988). One of the physiological
functions of NO may be to prevent the uptake of differ-
ent neurotransmitters. Several studies provided evi-
dence that NO inhibits the plasma membrane transport-
ers of different neurotransmitters. NO inhibited [3H]DA
(Lonart and Johnson, 1994; Pogun et al., 1994a; Cutillas
et al., 1998) and [3H]Glu uptake (Lonart and Johnson,
1994; Pogun et al., 1994b) but increased 5-HT uptake
(Miller and Hoffman, 1994). In regard to NE uptake,
according to Pogun et al. (1994a) NO had no effect,
whereas Lonart and Johnson (1995a,b) reported an in-
hibitory effect. In all of these studies, the authors di-
rectly measured the transmitter uptake (usually in syn-
aptosomes) in the presence of exogenously applied NO
produced from different NO generators. In our study, in
hippocampal slice preparation (Kiss et al., 1996), we
inhibited the neuronal NO synthase, which reduced the
endogenous NO production. This manipulation in-
creased the ability of dimethylphenyl-piperazinium, an
nAChR agonist, to evoke carrier-mediated release.
These data suggest that endogenously produced NO is

TABLE 7
Extracellular concentration of drugs in the plasma and cerebrospinal

fluid

Drug

Concentration

Plasma Cerebrospinal
Fluid Reference

mM

Nicotine 0.4–4.5 Zevin et al., 1998
Imipramine 1–2 Besret et al., 1996
Citalopram 1 Hyttel, 1982
Desmethyl-

imipramine
2 0.1 Muscettola et al., 1978

Fluoxetine 1 Pato et al., 1991
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able to inhibit the operation of NE uptake carrier (at
least if the direction of NE transport is reversed due to
certain conditions). In addition, with the use of microdi-
alysis, it has been shown (Kiss et al., 1999) that the
systemic administration of Nv-nitro-L-arginine methyl
ester, an NO synthase inhibitor, significantly reduced
the release of DA from the striatum (Kiss et al., 1999). It
was also seen that NO synthesized in neurons by induc-
ible NO synthase in several regions of the brain can
release ACh (Ikarashi et al., 1998) and that the NO
generator sodium nitroprusside (500 mM) increases ex-
tracellular DA levels in the striatum (West and Gallo-
way, 1999) in a [Ca21]o-dependent manner.

The synthesis of NO in the CNS is mainly linked to
the activation of NMDA receptors by Glu. Montague et
al. (1994) have shown that the activation of NMDA
receptors in synaptosomal preparations from guinea pig
cerebral cortex released both Glu and NE and that the
release is blocked by drugs that inhibit NO production or
remove NO from the extracellular space. In addition, the
activation of AMPA/KA receptors also increases NO pro-
duction. It is also known that the stimulation of NO
production is a [Ca21]o-dependent process (Garthwaite
and Boulton, 1995). These findings suggest that Glu
released from axon terminals increases NO production
via NMDA receptor activation and is able to potentiate
the release of Glu and other transmitters from the
neighboring synapses. Therefore, it seems likely that
NO is involved in the modulation of NMDA-induced
release of neurotransmitters (Montague et al., 1994;
Sandor et al., 1995; Segovia and Mora, 1998; cf. West
and Galloway, 1999).

With a half-life of a few seconds, NO generated at a
single point source should be able to influence function
within a sphere with a diameter of ;300 to 350 mm
(Garthwaite and Boulton, 1995), which is very large
compared with the dimensions of a synapse. According
to Gally et al. (1990), NO may diffuse up to 100 mm in
5 s. Therefore, it is suggested that NO is an ideal endog-
enous substance for nonsynaptic interaction and may
transmit long-distance messages from transmitters
(e.g., Glu) exclusively released into the synaptic gap.

VI. Clinical Implications

High-affinity transmitter receptors and transporters
located nonsynaptically are the targets of many drugs of
therapy and abuse. Are the receptors and transporters
located outside the postsynaptic density of the synapse
functionally part of a single synapse? Taking into ac-
count the morphology of arborization of noradrenergic,
dopaminergic, serotonergic, and cholinergic systems, the
answer is certainly no. These receptors and transport-
ers, having no synaptic arrangements, are promiscuous
and accessible to chemicals released from numerous syn-
apses and/or nonsynaptic boutons. They are certainly
accessible to drugs taken by the patients with agonist/

antagonist activity on these receptors. It is well estab-
lished, for example, that the uptake of NE by noradren-
ergic varicosities is largely mediated by high-affinity
NETs (cf. Trendelenburg, 1991). The monoamine trans-
porters are the therapeutic targets for tricyclic antide-
pressants, psychostimulants (amphetamine), and co-
caine. Serotonin uptake blockers, such as fluoxetine
(Prozac), have been used for the treatment of depression,
obsessive-compulsive disorder, and sleep and eating dis-
orders.

It has been observed that the activity of GABA trans-
porter is reduced in human epileptic hippocampus (Dur-
ing et al., 1995). Therefore, it was suggested that GABA
uptake blockers may be used as anticonvulsive drugs.
Although a loss of benzodiazepine binding sites is char-
acteristic of temporal lobe epilepsy, recent data show
that an up-regulation of GABAA receptors (Nusser et al.,
1998) in hippocampal dentate gyrus granule cells repre-
sents a compensatory mechanism (cf. Fritschy et al.,
1999). There is an interaction between serotonergic and
GABAergic neurons in the hippocampus (cf. Gulyás et
al., 1999); the evoked GABAB receptor-mediated slow
inhibitory postsynaptic potentials (IPSPs) measured in
pyramidal cells and mediated via nonsynaptic 5-HT1A
receptors (Segal, 1990) are reduced, and the GABAA
receptor-mediated IPSPs are increased (via 5-HT3 and
5-HT2 receptors; Shen and Andrade, 1998), thereby
shifting the GABAergic inhibition into the perisomatic
region. The possible involvement of GABAergic inter-
neurons (cf. Freund and Buzsáki, 1996) in schizophrenia
and other psychoses has been recently reviewed
(Keverne, 1999). Inhibitory GABAergic interneurons
with their serotonergic, dopaminergic, and cholinergic
inputs play an important role in maintaining network
oscillations (Buzsáki and Chrobak, 1995).

Cocaine inhibits monoamine (NE, DA, and 5-HT)
transporters (Ritz et al., 1987; cf. Lester et al., 1994). As
far as its reinforcing action is concerned, the inhibition
of the DAT is the most important (Ritz et al.,1987).
Cocaine blockade of DAT results in an increased level of
extracellular DA (Rocha et al., 1998) in the limbic sys-
tem, an effect widely accepted to be the primary cause of
the reinforcing and additive effects of cocaine (Kuhar et
al., 1991).

It seems likely that the mode of effect of 3,4-methyl-
enedioxymethamphetamine (Ecstasy) is mediated via
serotonin transporter, producing a heterologous ex-
change (Rudnick and Wall, 1992). Amphetamine is
taken up by NETs and DATs in expense of transporting
NE and DA out from the cytoplasm.

It seems plausible that the effects on the manic-de-
pressive state that are due to influences on noradrener-
gic transmission may be mediated through changes in
the release of other transmitters at the cortical level.
Several reports have suggested that long- but not short-
term treatment with certain tricyclic antidepressants
decreases the functional sensitivity of a2-adrenoceptors
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in brain (McMillen et al., 1980; Spyraki and Fibiger,
1980). It has been shown that clonidine inhibition of the
acoustic startle reflex in the rat, a behavioral measure of
a2-adrenoceptor sensitivity after desipramine adminis-
tration, was also attenuated (McMillen et al., 1980;
Davis and Menkes, 1982). The presynaptic link between
the noradrenergic and serotonergic (Feuerstein et al.,
1993) axon terminals, NE, reduces the release of 5-HT
and could explain how by increasing the biophase con-
centration of endogenous NE in the vicinity of a2 het-
eroreceptors, a selective NE uptake blocker may inhibit
or reduce the release of 5-HT. As a consequence, both a2-
and 5-HT receptors are up-regulated. Under this condi-
tion, any increase in 5-HT release might induce suicidal
behavior. Thus, the density or sensitivity of the presyn-
aptic a2-autoreceptor expressed on the noradrenergic
varicosities and of the heteroreceptor expressed on the
serotonergic varicosities could result in inhibition of
neuronal release of NE/5-HT and lead to depression.
Increased density (Callado et al., 1998) and sensitivity of
a2A-adrenoceptors in prefrontal cortex could represent a
common feature of the reduced monoaminergic (norad-
renergic and/or serotonergic) function postulated in de-
pression (Garcia-Sevilla et al., 1999).

On the basis of the hypothesis that an increased 5-HT
release relieves certain symptoms of depression, block-
ade of the negative feedback modulation of 5-HT release
has become an attractive concept for antidepressant
drug development (cf. Göthert and Schlicker, 1997), in
particular when combined with selective uptake blocker.
a2-Adrenoceptors other than autoreceptors are also
down-regulated by chronic inhibition of NE uptake by
tricyclic antidepressant treatment (Bill et al., 1989). Al-
though many studies indicate that a down-regulation of
central b-adrenoceptor sensitivity accompanies chronic
antidepressant administration, the consequences of
such treatment on a2-adrenoceptor function are more
equivocal (Charney et al., 1981; Sugrue, 1988). Accord-
ingly, biochemical and functional studies have demon-
strated that depressed patients have an increased den-
sity and sensitivity of platelet a2-adrenoceptors (Piletz
et al., 1986) and that these receptor abnormalities are
confined to the high-affinity state (a2H) of the receptor
that preferentially recognizes agonists (Garcia-Sevilla et
al., 1981, 1986, 1987). In addition, a correlation between
a2-adrenoceptors and suicide was established (De Per-
mentier et al., 1997). There is some evidence that sug-
gests that mania is related to disturbances in cat-
echolaminergic neurotransmission (Silverstone, 1985).
In contrast to depression, mania may be characterized
by increased noradrenergic and/or dopaminergic trans-
mission. An increase in noradrenergic metabolism is
supported by the higher excretion of urinary 3-methoxy-
4-hydroxyphenylglycol in manic compared with depres-
sive episodes and the notable increase in cerebrospinal
fluid NE itself. Moreover, there are some indirect phar-
macological data suggesting that drugs able to decrease

noradrenergic transmission, such as reserpine, might be
associated with an increased incidence of depression and
therapeutic effects in mania. Conversely, most tricyclic
and monoamine oxidase inhibitor antidepressants po-
tentiate the noradrenergic system and may potentiate
manic shifts (cf. Mongeau et al., 1997). Moreover, the
a-adrenoceptor agonist clonidine, which decreases firing
of the noradrenergic cells of the locus ceruleus by acting
preferentially at presynaptic autoreceptors (Svensson et
al., 1975) and reduces the NE release, has antimanic
properties. Many antipsychotic drugs inhibit MK-801
(dizocilpine) binding to NMDA receptors with IC50 val-
ues in the micromolar range (Shim et al., 1999), but
their clinical effect may not be mediated via these recep-
tors.

There is increasing interest in developing therapeutic
agents that will prevent Glu neurotoxicity, an effect
mediated via postsynaptic receptors. Therefore, most of
the efforts are involved in a search for Glu receptor
antagonists. However, presynaptic receptors able to in-
hibit Glu release offer another target at which the drug
would be able to reduce Glu release. This type of drug
would be effective in convulsion and in ischemic insult
(cf. Tapia et al., 1999). The NMDA receptor may also be
involved in a variety of psychiatric illnesses, including
schizophrenia (cf. Shim et al., 1999).

It is generally accepted that the activity of cholinergic
innervation of the cerebral cortex plays a crucial role in
cortical arousal and attention and is critically involved
in memory and learning (Dunnett et al., 1991; Harder et
al., 1998). The specific lesions of basal nucleus of Mey-
nert produce cognitive impairment, whereas lesions of
the medial septum result in large and permanent im-
pairments of certain types of conditional learning. In
addition, the discovery that in Alzheimer’s disease there
is a very substantial loss of this cholinergic input
(Whitehouse et al., 1982; cf. Kása et al., 1997) and its
involvement in cognitive deficits observed in patients
(Dunnett et al., 1991) just further increased the interest
in this topic (Giacobini, 1998). Cholinesterase inhibitors
are the current drugs of choice in the treatment of Alz-
heimer’s disease (cf. Giacobini, 1998). A direct correla-
tion was found between the level of acetylcholinesterase
inhibition, increase in extracellular concentration of
ACh in cortex and hippocampus, and cognitive improve-
ment (cf. Kiss et al., 1999). In addition, it has been
shown (Kiss et al., 1999) that cholinesterase inhibition
enhanced both ACh (Moor et al., 1995) and NE release in
the hippocampus. These findings may help to under-
stand the beneficial effect of cholinesterase inhibition in
Alzheimer’s disease. Similarly, a selective M2 subtype
antagonist with an exclusive effect on cholinergic vari-
cosities and able to cross the blood-brain barrier and to
increase ACh release by preventing the negative-feed-
back inhibition of ACh release would be a potential
therapy.
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Activation of presynaptic inhibitory muscarinic recep-
tors inhibits the excitatory intrinsic fiber synaptic glu-
tamatergic transmission and prevents recall of previ-
ously learned memories from interfering with the
learning of new memories (Hasselmo and Bower, 1992,
1993; Hasselmo and Schnell, 1994; Hasselmo and Bar-
kai, 1995).

If the cholinergic high-affinity M2 receptor-mediated
suppression of intrinsic glutamatergic input to pyrami-
dal cells is in operation, the advantage of increased ACh
release can be used in learning, provided the effect of
ACh on dendrites to increase excitability of pyramidal
cells is not inhibited (cf. Hasselmo and Bower, 1993).

The effect of nicotine to increase NE release (cf. Won-
nacott, 1997) and synaptic transmission (cf. Chiodini et
al., 1999) from the hippocampal noradrenergic varicosi-
ties is in correlation with its beneficial action on learn-
ing and memory. Because this effect is mediated via
high-affinity nAChRs of presynaptic location (cf. Won-
nacott, 1997; cf. Vizi and Kiss, 1998), attempts have
been made to find an nAChR agonist for treatment of
Alzheimer’s patients. It is also a very well established
concept that activation of dopaminergic transmission
(increase of DA release) via activation of nAChRs is
beneficial in Parkinson’s disease (cf. Reader and Dewar,
1999).

VII. Summary

The synaptic information flow has been the most fre-
quently studied field of neuroscience for the past ;50
years, but recent developments that point to different
types of release of transmitter (Table 1) from varicosities
without synaptic contact and receptors and transporters
of nonsynaptic location is based on nonsynaptic commu-
nication (Vizi and Knoll, 1971; Vizi, 1974, 1979, 1980b,
1984, 1990, 1991; Fuxe and Agnati, 1991; Vizi et al.,
1991; Vizi and Lábos, 1991; Bach-y-Rita, 1993; Zoli and
Agnati, 1996; Vizi and Kiss, 1998; Zoli et al., 1999) not
requiring impulse frequency coding. The findings of
Herkenham (1987, 1991) that there are mismatches be-
tween release sites and receptors, represented impor-
tant support for the nonsynaptic interaction hypothesis.
The formerly more restricted view of chemical signal
transmission within the synapse has to be extended,
because considerable evidence has accumulated to show
that although the brain is a wired instrument, its neu-
rons, besides cabled information signaling (through syn-
apses), are able to talk to each other without synaptic
contact (i.e., “wireless”). These apparently nonsynaptic
arrangements furnish an efficient way to influence neu-
ronal activity continuously in a large field, involving
vast neuronal ensembles, without directly contacting
every single cell. They are comparable with radiowave
transmission instead of the telephone system; the mes-
sage is sent in a long-distance manner, and only a prop-
erly tuned receiver can accept it. Thus, only cells that

are equipped with proper receptors sensitive to the li-
gand can accept the chemical message. Because recent
studies (Nicholson and Rice, 1991; Routtenberg, 1991)
showed that the size of extracellular space is ;20% of
brain volume, it is suggested that this is the space in
which transmitter released from varicosities can diffuse
away from the release site. Because the extracellular
concentrations of transmitters in this space are in the
nanomolar to micromolar ranges, the receptors of non-
synaptic location are of high affinity. The high-affinity
uptake system located nonsynaptically plays a critical
role in terminating the effect of transmitters released
from nonsynaptic varicosities on receptors expressed
nonsynaptically.

The nonsynaptic communication system has a similar
degree of selectivity as that of synaptic circuitry but
possesses, in addition, a domain of versatility and plas-
ticity in “hardwared” circuitry.

Gone is our understanding of hard-wired neuronal
circuitry created for the amplification of digital informa-
tion in the synapse, with the use of very fast transmit-
ters able to produce “on” and “off” signals within us; we
have to change our mentality and accept there is a
nonsynaptic communication system that in the brain, an
analog information transfer, whose time constant may
be seconds or even minutes. The digital information
traffic is affected from time to time by chemical mes-
sages sent from neurons located far away. Thus, if a
transmitter is released from neurons in concert, result-
ing in a long-lasting high concentration of the transmit-
ter, it will be able to modulate tonically the release of
another transmitter.

The original observations made in 1968 and 1969
(Lindmar et al., 1968; Vizi, 1968; Löffelholz and
Muscholl, 1969a,b; Paton and Vizi, 1969) that the re-
lease of transmitter can be influenced (inhibited or in-
creased) through the activation of presynaptic receptors
by chemicals released from another neuron led to a novel
mechanism of interaction of neurons equipped with dif-
ferent transmitters and opened a new strategy of drug
therapy. Therefore, it seems likely that compounds with
a selective effect on high-affinity receptors and trans-
porters expressed on varicosities of nonsynaptic location
may represent the beginning of a new generation of
innovative drugs.
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Alberts P, Bártfai T and Stjärne L (1981) Site(s) and ionic basis of a-autoinhibition
and facilitation of 3H-noradrenaline secretion in guinea-pig vas deferens. J Physiol
(Lond) 312:297–334.

Alkondon M, Pereira EFR and Albuquerque EX (1996) Mapping the location of
functional nicotinic and g-aminobutyric acidA receptors on hippocampal neurons.
J Pharmacol Exp Ther 279:1491–1506.

Alkondon M, Pereira EFR, Barbosa CTF and Albuquerque EX (1997) Neuronal
nicotinic acetylcholine receptor activation modulates g-aminobutyric acid release

NONSYNAPTIC COMMUNICATION VIA RECEPTORS AND TRANSPORTERS 81

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


from CA1 neurons or rat hippocampal slices. J Pharmacol Exp Ther 283:1396–
1411.

Allen TGJ and Brown DA (1993) M2 muscarinic receptor-mediated inhibition of Ca21

current in rat magnocellular cholinergic basal forebrain neurons. J Physiol (Lond)
466:173–189.

Allen TGJ and Brown DA (1996) Detection and modulation of acetylcholine release
from neurites of rat basal forebrain cells in culture. J Physiol (Lond) 492:453–466.

Allgaier C, Agneter E, Feuerstein TJ and Singer EA (1992) Estimation of the
biophase concentration of noradrenaline at presynaptic a2-adrenoceptors in brain
slices. Naunyn-Schmiedeberg’s Arch Pharmacol 345:402–409.

Allgaier C, Warnke FP, Stangl AP and Feuerstein TJ (1995) Effects of 5-HT receptor
agonists on depolarization-induced [3H]-noradrenaline release in rabbit hippocam-
pus and human neocortex. Br J Pharmacol 116:1769–1774.

Amara SG and Kuhar MJ (1993) Neurotransmitter transporters: recent progress.
Annu Rev Neurosci 16:73–93.

Andrews N, Zharkovsky A and File SE (1992) Raised [3H]-5HT release and 45Ca21

uptake in diazepam withdrawal: Inhibition by baclofen. Pharm Biochem Behav
41:695–699.

Apparsundaram S, Schroeter S, Giovanetti E and Blakely RD (1998) Acute regula-
tion of norepinephrine transport: II. PKC-modulated surface expression of human
norepinephrine transporter proteins. J Pharmacol Exp Ther 287:744–751.

Asztely F, Erdemli G and Kullmann DM (1997) Extrasynaptic glutamate spillover in
the hippocampus: Dependence on temperature and the role of active glutamate
uptake. Neuron 18:281–293.

Attwell D, Barbour B and Szatkowski M (1993) Nonvesicular release of neurotrans-
mitter. Neuron 11:401–407.

Bach-y-Rita P (1993) Neurotransmission in the brain by diffusion through the
extracellular fluid: A review. Neuroreport 4:343–350.

Bagdy E, Solyom S and Harsing LG Jr (1998) Feedback stimulation of somatoden-
dritic serotonin release: A 5-HT3 receptor-mediated effect in the raphe nuclei of the
rat. Brain Res Bull 45:203–208.

Baker PF and Crawford AC (1975) A note on the mechanism by which inhibitors of
the sodium pump accelerate spontaneous release of transmitter from motor nerve
terminals. J Physiol (Lond) 247:209–226.

Balfour DJ (1980) Effects of GABA and diazepam on 3H-serotonin release from
hippocampal synaptosomes. Eur J Pharmacol 68:11–16.

Barbour B, Brew H and Attwell D (1988) Electrogenic glutamate uptake in glial cells
is activated by intracellular potassium. Nature (Lond) 335:433–435.
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Sperlágh B, Sershen H, Lajtha A and Vizi ES (1998) Co-release of endogenous ATP
and [3H]noradrenaline from rat hypothalamic slices: Origin and modulation by
a2-adrenoceptors. Neuroscience 82:511–520.
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